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The problem of contraction of the boundary ofl content in an oil-bearing strat-
um and of the motion of a heavy incompressible fluid with nonlinear condition
at the free surface can be reduced to the Canchy problem for a nonlinear in-
tegro-differential equation [1, 2], Solvability of the Cauchy problem  for
equations of that type with smooth or discontinuous initial conditions is consid-
ered. A linearization method is developed on the example of problems of
dispersion of ground water mound and of lowering the level of ground water
by drainage. The result of linearization is either a Fredholm equation of the
second kind or an equation that can be reduced to it, Solvability of that
equation is proved and the linearization error estimated.

1. Let us consider the problem of determination in region  Q = {(z, #): —
00 < T < -+ 00, 0 t < Ththe solution h (z, t) of the nonlinear integro-differ-
ential equation o~

hf"',i"( S [ko+ B E )] Ko (2 — & h,M)dE — Boh =0 (L1
K-o(x; by M) = [2he(z, ) — (b — )2+ (B —=n)1, 0 =R(E 0)
which satisfies the condition

B (2 1) fimto = ho(2) (L2

where Boh is some generally nonlinear operation (depending on the form of B, ,
(1.1) and (1. 2) correspond to different problems of unsteady filtration with nonlinear
conditions at the free surface; examples of such problems appear in [1, 2] and below)
and Ky is a comstant parameter.

Let CEV™ (Q) be a set of functions absolutely integrable together with their
derivatives which are continuous with respect to £ (t & [0, T]) and satisfy
Hélder's condition with exponent v, 0<Cv, < v <C 1  with respectto z; (C}°
(R) is a set of functions that have the same properties as the derivatives of functions
from the set C}'V 1%,

Lemma, Let he CY¥W(Q) and Boh & €1 ° (Q), then the operator
of the left-hand side of (1) maps the set of functions belonging to C}™V'¥*¥(Q) into
theset C1 °(Q).
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To prove this we represent the integral with kemel K,~ in the form

§Kn‘(x-§;h.n)d§=—- §D°(h)[1—-i-%}d§ (1.3)

Do(h) = E*h (2, t) + Ehz, ©) — h (z + &, B)],
D, =t%h(z, t) —h(z+ E, 8]

It is sufficient to show that the integral of D, belongs to theset CY'° . This

is achieved by splitting the integral into two parts which correspond to segments | § |
<1t and |E]|>1.

Using formula (1, 3) we tramsform Eq, {1.2) to

bz, t)+ 2 \ Do(h)dE = Buh (L9
t ¢ k, ¢ Dy thy D3 {h
Bih = Boh — — S hy (5, t) Ko™ df + > S : ;f*_ i) &

where in conformity with the lemma Bk & CT'°
To analyze peoblem (1, 2), (1.4) we consider the subsidiary problem of finding
function A (x, £) that satisfies the equation

b

Mzt + 2 { Dewydt=fiz, 1) (L5

(RS

and condition (1.2) if h, & C}", B°%, &= C1Y, f (2, t) e CY'°,  where

o

Dh2(2) = | a| Dh,, ¢k.=-.-’-,-3§;_‘.— 3 h(z, t) o= dx

Theorem, When h,e=CH f(z, ) =Cp° and hS e CL¥ then
the solution of problem (1,2), (1. 5) belongs to set C}*¥''*¥ and is determined by
formula

h(z, ) = h,(z) % ¢ (z, 8) + Bf (1.6)

{
Bf =@ [ oxp[— ko a|(t — 7)) Of (=, 7)dv
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Borp = 5 ke (z —E) ¥ (5, 1) 48, \b(z,t)ﬂ-fr;rﬁ%ﬁ

Solution (1. 6) is determined using the Fourier transformation. From the equality

Bf =tf(x, °)*¢(z, L), °=t({1 —8), t, = 0t
<<t

we obtain the relationships
B =1y @) (2, ) + g | 1@ + Meeta, 1) — (.7
0

1z — hketo, )] s
b= — ko p (@, ) + @ 1) — ketf (2, )« - (2, )

From (1. 6) and (1. 7) we have the following estimates:

lhl<sgplhal+tsgplﬂ (1.8)

[ imld=< [ Ilda+t {1f1de
e | < sup By’ |+ gy SR | (5 + Mol ) — f (5 — Moty ]

T lhaidx<koj lh,°ldx+2§ |f(z, %)) dz

ez, ) =By D] <Iey+ 6 (1 + Yink)l |z —y
[ he(z, 1) — Raly, 8) | Mooty + ex(W/n + 321 |2 —y I

where €y, €;,and €3 are constants in Hdlder's conditions for functions h,f and
he’y respectively, This proves the theorem,

Corollary. Theelementsofset BB,h, where B, is any operator that
transforms set  h & CE" ™ ito Cp'°, belong to set CY¥ ¥ (B is determin~
ed by formula (1. 6)).

According to Theorem 1 and its corollary problem (1.2), (1.4) (or(1. 1)) is equival~
ent to the equation

h—hy— BBk =0, hy=h,ay(z, 1) (L.9)

whose any solution A e C1™ 1%V,
Remark. Inthe subsequent determination of sets C}'°® and CPV !  we
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substitute the condition
[21 [Re(@ )} [Be|<<comst (1 + |z 81, g0

for the condition of absolute integrability,
We introduce the norm

Il = max sup et [(4+ [z [40) (k| + Ay [ e+ I | Be D+ (110

A fl k]
ukgvz sup 1}3;(2, 3)-—}!*(3!, t)!—{-i}::(x, t)__kz W, Z)]
%y fz—y|

where M and A; (j = 1, 2, 3) are positive parameters which will be determined
below.

Let us assume the existence in some sphere || A — k, | C R of derivatives B,’
and B," of the nonlinear operator B, which map set c¥v v into CY° and
that

| BS(WAR| << collAb ], [BSARAR < cs | AR J AR (11D

It is now possible to consider the nonlinear operation P (h) which corresponds to
the left-hand side of (1. 9) and maps sphere || h — h, || C R intospace C,. In
that sphere operation P (k) has the first and second order derivatives

P'(h)Ah = Ah — BB,'(R)Ah, P"AhA’h = —BB,"(R)AhA'h

It can be readily shown that, owing to the linearity of operations D, and Dy,
B, (m)Ah and B," (k)AhA’h belong toset CT°.

The nonlinear equation P (k) = 0 is analyzed using the Newton —Kantorovich
method [3,4], Function R, is taken as the initial approximation of Newton's process
and an estimate is obtained of the norm of the inverse operator [P'(ho)I™* = [E —

Al which yields the solution of the integro-differential equation

uU— Au = —P (hy), P (hy) = —BBy (hy) (1.12)
Au = BB, '(ho)u, u = Ah = hy — hyy, hy == h, ¢

where A,(z, ) is the sought first approximation and E is a unit vector. Thus the
solution u (z, ¢) of Eq. (1.12) determines the first approximation of Newton's process
for Eq. (1.9) (or probiem (1. 1), (1.2)).

Since  B,'(h)AR & CY°, hence in conformity with the corollary of Theorem
1 it is possible to use estimates (1.8). Then, taking into account the uniform bound-
edness of functions 1, Ly, and Uy, and of equalities
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9/ 0zBB,'u = tBB,'u (z, to) = ¥, (z, 1)

0/ 0tBB,'u = BB,'u — kotBB,'u (z, t,) « ¢, (z, t°)
we obtain

M1 2 d

et (| Au| +h1|d—Au|+ ha |7 Au [+ dall du ) <

1— M

4 1 Age,
—'—M—-i- 1-l-h( +7)+%V-sz}xsxip|ue-m|

Ce

where ¢y is the sum of constants in Holder's conditions,
The influence of 1 -+ |z [I*B leads to the substitution of another constant for
€s . Wehave

lal<e[mrm + S (L4 L) htha] = W

The estimate
| BB," | < cs(1 — e ™) [ M + coly + 4y + Ap) =%,

can be similarly obtained,

We assume M to be fairly large and A; fairly small so that % <C 1. Let the
input function k,(z) be such as to ensure the inequality || P (h,) || < (1 — %)R,
then according to the principle of contractive mapping there exists in the sphere || & ]

< R aunique solution of Eq, (1,12), and

HHE—-AI? < (1 —2) (1.14)

Theorem 2. Letthe following conditions:

1) the nonlinear operation B, and its derivatives B," and B," map the set of
functions h e CI'V'*¥ into C1'® and the estimate (1.11) hold,

2) function h, (z) & C}" issuchthat

NP (ko) | <ol —%) R (1.15)

3) parameter J/ ensures the validity of inequalities

®ol (1 — %) 1< 1, 2] g = Ko <% <1 (1. 16)



942 A. Begmatov

are satisfied, then the unique solution of the Cauchy problem can be obtained by using
the Newton's process.

Parameters ), are selected to as to transform (1. 16) into noarigorous inequalities,
There exists then a unique solution of Eq, (1.12) and all conditions of Kantorovich's
theorem [3,4], from which follows Theorem 2, are satisfied, Note that condition
(1.15) and estimate (1. 14) ensure the validity of inequalities

Mo = YR (1 — »)™

in which the equality sign can only apply when 17, = /,.

Let us consider the case of discontinuous initial conditions. Let h, (z) & L be
a step function. It is then possible to consider, without loss of generality, the single-
step function

he(z) = d = comst, |z| <1, Be(2) =0, |z|>1

The limit value of the derivative of h(z, + 0) can be obtained by assuming
that Eq, (1,1)is validup to ¢ = -0, exceptatpoints |z| =1, i.e.

p— L\t + @K@ HE=1@), |z]#1

u=ht(z’+0)’ f($)=8hl¢-+o
01E)1<L, lzl<ti —dl+@E—8T7 B> (=1t
K("'g""{d{w(x—a}’r‘,,m<1, 121> 0, [E|>1, |=2I>1

If the Fourier formula holds for function f (z) , the application of the Fourier
transformation the solution of the latter equation is obtained in the explicit form

=h+FF+up ) |z|>1 .17
u=fr+f+F+ ) k§1(— 1)ty (x, 2k) —

fo 3 (— D9 2+, (2] <1
Fef@yl—lzl) FF=f@x(lz]—D
wWe) =1,2>0; x@ =0, L0 ¥z, a) = afln (2* + @]

fi(#) = —dko/n U n — arctg (z + 1) + arctg (z — Ny (1 — |z
fo(z) = dko/nMarctg (z + 1) — aretg (z — Dy (|z| — 1)
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Obviously

lim he(z, 1) =0, |z]|++1 (1.18)
t—et0

It is then possible to represent Eq. (1.1) in the form (1.4) only when ¢ >0 and,
consequently, if f (z, &) & CI'° in the region with deleted points (z, ) = (%
1,0), then unlike in (1.17) and (1, 18), the behavior of derivatives of h, and
h, of the solution of problem (1.2), (1.4) near the discontinuity point |z] =1
isof order O (¢~!) when ¢ - +0. The left-hand side of (1. 9) has finite limits
when t-—> +0 (Jz|==1), butitsindividual terms have singularities of the indicat-
ed type. Owing to this in the estimates for h, and A, the constants are replaced
by functions of ¢ which tend to infinity when t — +0. Omitting the proof, we
note that solvability of this problem is proved by the norm (1. 10) wheret & [T,, T],
To >0 onlyfor te (T, TI. .
As an example of B, we consider the operator

oo

Boh=——1 \ lh+m@ 0K @& b m)dE— (1.19

q(t)Ko(z; k, co + he) — ko
Ko*(z; by M) = [zhy — (b +q — 2h)llz* + (B + 1 — 2hs)%]?
K&(:a k, 'fl) = Ko'(-’”? h, T]) + K0+ (z; h, 'ﬂ)

hw——'limh‘" hu=h+hm, 0<c°<1—80, 8°>0

x|~

It is assumed that when ¢ =0, %,(2) =0 and hu(z, +0) =hy =1,
where &, is the ground water level measured from the waterproof stratum,

Here g = 0 relates to the problem of dispersion of a ground water mound in a
stratum of finite thickness (Boh = 0 cormesponds to its dispersion in an infinitely
thick stratum), while ¢ == 0 comesponds to the problem of the fall of ground water
level produced by a sink of intensity ¢ (f) located at point (z, z) = (0, ¢,) of
the motion region {(z, 2): — o<z < + 00, 02 & (z, t)} [2)

In the first case (¢ = 0) conditions 1) of Theorem 2 is satisfied for any finite
radius: R, R > exp (—MT) sup | h, |, and in the second forR< ({—cy—ey)exp
(—MT). The necessity of the latter constraint is due to the form of K, (z, k; ¢, -
he) and is related to the loss of solution uniqueness for the ground water level in
proximity of the tubular drain contour which is replaced by a line sink [§]. In that
case with h, (0, £) = ¢, the assumption that z = h, (z, ) belongs to Liapunov
curves [2] is no longer valid,

Condition (1,15) can be satisfied by a suitable selection of functions %, (z) (g
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=0)or ¢(t) (¢==0).

2 Linearizationm of thenonlinearintegro~differen-
tial equation, Equation(l.1) with allowance for (1. 19) is of the form

"

1 (2.1

hy — =5 S tro + by (B 1 Ky (= — %: by ) dE -

00
oo

2 h, (€, t) dg
“__S“ (zt—- B4 — () Ko(zi bycy+ o) = 0

n
Ri(z~ & h,m) =Koz — & hym) + 2/ [(z — B + 4]

An approximate solution of problem (1, 2), (2.1) can be obtained by the lineariza-
tion method. For this the time interval [0, 71 is subdivided by points 0 = £, <
u<...<ty=Tin N parts, and K, and K; atthe small intervals (&, t,,,]
are replaced by their values for ¢ =1%, — 0 (m=1,2,..., N —1)

KEi(z—E b, =K (z—E§ h 0 [z:zm_oﬁ Ky (z, & )
Ko (z} by co - hgo) = KQ {z: h (x, tm — 0), ¢ 4 hm) = K, (z, tm)

For m =0 functions 4 and y in K, and K; are replaced by their initial
values, Then, instead (2.1) we have the linear equation

Umyy (1) — ":';" S u (g, ) Ky (2, Ei ) dE + (2.2

S gy (B 1) dE
A = DI TR

k oo
folz, ti8,,) n-—é’* S Ki(2 8 ty) + 0 (1) Koz, t,y,)

Bmyl (, ty=h(z,8), te (tm, tm.ul

If we assume that the Hilder exponent v >/, and that the Fourier formula
holds for f, , the Fourier tranaformation makes it possible to reduce (2.2) to the
Fredholm equatfon of the second kind

Uy (22 8) == --1;‘~ 5 Uy (Be 8) Kz, g2, )dE == f(2. 1) (2.3)

K=K+ Ky, Ky= Ky (2,8 tm)*2(2)
g(z)a-%(—-'i)"'b(s,%), § == fo -+ foog

K=l
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The homogeneous equation that corresponds to (2. 3) has only a trivial solution,
since owing to the uniqueness of the Fourier transformation it is equivalent to Eq, (2.2).
The homogeneous equation which corresponds to the latter is at the limit the same as
Neumann's homogeneous external equation for expanding regions tending to the band

{(x’ 2} —°°<x<+°°’ "’&u(” t) <z hy (z’ t)}) te (“mn t'm{»)_}

This implies the triviality of solution of the homogeneous equation and the unique
solvability of (2.3).
Note that for a fairly smooth input function ke (z) the solution of (2.3) is m =
N —1 and uy = ™% and uy’ & ), hence the Fourler formula is valid for
function fo(r; 6 ¢,), m=1,2, ., N —1,
The linearization error

Epiy = U (z, t) — Upm41 (=, 1), te (tm, t‘m-ﬂ]» u == hy

where h (z, t) is the exact solution of Eq. (2.1) and satisfies the equation of the
form ((2.3) with kemel X = Ky (z — §; kg mi Tyn, m) and the right-hand side of
/= fyAh,,, where f, denotes some linear operation on  Ahy. That equation is
similar to (2. 2) and reduces to a Fredholm equation of the second kind; moreover we
have the equality

m
Dby, m= (t—ty) u (2, tp) o+ D)t — t_) ez, ) m> 1
By
Ahg=tu(z, &%), t <t <t k=12,...,m
K

m
B, = ZI ugy, (2, ¥)dT
k=1 lk-1

from which, on the assumption that kh = €} %  we find that the linearization error
en(m=1,2,...,N) isoforder O (At) where At= max (tx — t;_j)e

The difference between the proposed linearization method '<*<™ and the earlier

modification of Euler's method [1] applies to integro-differential equations of this type

is similar to the difference between the results obtained with implicit and explicit

difference schemes applied to the solution of equations of the parabolic type.
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