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The problem of contraction of the boundary oil content in au oil-bearing rtrat- 
urn and of the motion of a heavy incompressible fluid with nonlinear condition 
at the free surface can be reduced to the Cauchy problem for a no&neat in- 
tegro-differential equation fl, 21, Solvability of the Cauchy problem for 
equations of that type with smooth or d~~~nu~ initial conditions is con&d- 
ered. A linearizatton method is developed on the example of problems of 
dispersion of ground water mouud and of lowering the level of ground water 
by drainage. The result of ~~aKon is either a Fredholm equation of the 
second hind or an equation that can be reduced to it. Solvabflity of that 
equation fs proved and the Hnearization error estimated. 

1. Let us consider the problem of determination in region Q = ((2, t): - 
00 < x < + 00, 0 < t f T)the solution h (z, t) of the nonlinear integro-differ- 
ential equation oD 

k--+ s I~of-~~(E,~)l~o-(a:-~Eh,~)~-BdG~O O.l> 

K-b: h, rl) =-i&(x, t) - (h - q)l Ii + {h - q)Y, q = h (t, t) 

which satisfies the condftion 

where Boil is some generally nonlinear operation (depeudiug Al the form of Bo , 
(1.1) and (I. 2) correspond to different problems of uusteady filtration with nonlinear 
conditions at the free surface; examples of such problems appear in [l, 21 and below) 
and kp is a constant parameter. 

Let c”;“* ‘* @) b e a set of fkanctfous absolutely integrable together with their 
derivatives which are continuous with respect to t (r E IO, n) and satisfy 
Hislder’s condition with exponent v, 0~ va 7 v < 1 with respect to x ; Cz” 
(ht) is a set of fimcffons that have the same properties aa the derivatives of functions 
from the set CL** I+“. 

Lemma, Let ,6=C1L+y*I+‘* (Q) and B,h E C”,l o (62) , then the operator 
of the left-hand side of (1) maps the set of functions belonging to Cr’* ‘“(&I) into 
the set CU,, ’ (ii?). 

937 
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To prove this we repreoertt tbe Wegal with kernel X0- fn the form 

and condition (1.2) if & EZ C”t’, ha6 E CL”, f (;c, t) EZ C”i ‘, where 
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Sol~tiw (1.6) is determined using the Fourier ~~orrna~o~ From the epuality 

From (1.6) and (1.7) we have the following estimatw: 

where c,, cat and es are constants in H&der’s conditicns for functions &j and 
h’ c1? respectively. This proves the theorem. 

e o r 01 la ry, Theelemeots ofset B&h, where 23% is any operator that 
transforms set h E Ci** M-V into c”i ‘, belong to set Ci** l++ ( B is determin- 
ed by formula (1.6)). 

According to Theorem 1 and its corollary problem (1.2), (1.4) (or (1.1)) is equival- 
ent to the equation 

h--h*-- B&h = 0, ho = ho * \I, (xv t) (1.91 

whose any solution h E Czwn ‘+v , 
R e m a r k. In the subsequent de~r~a~~ of sets Cz ’ and Ciff* ‘+” we 
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substitute the condition 

for the corIditfon of absolute ~~r~~~~. 
We introduce the norm 

where itf and hj (j = 1, 2, 3) are posithe pararne4e.m whi& will be determined 
below. 

Let us assume the existie in some sphere 11 it - la, /J < R of du’fvatives&,’ 
and Be’ of the nonlinear operator B. which map set Ci** l*r into Cz ‘, and 
that 

It is now possible to conddtr the nonliacar uperation P @) which ~r~~n~ to 
the left-hand tie of (1.9) and map sphere 11 h - la, jJ g 8 in& space C,. In 
that sphere operation P (h) has tht first and second order derivatives 

P’(h)Ah = Ah - B&‘(h)Ah, P"AhA'h = -BB,“(h)AhA’h 

It can be readily shown that, owing to the linearity of operations Do and D,, 

B1’ (h)Ah and I?,” (~~AhA’h beluig to set c’i ‘. 
The nonUtear equation P (h) = 0 is ~a~y~e$~~New~~ -Kantomvich 

method [3,4]. Function hO is taken as the initial appnuimation of Ne$un’s or~ess 
au~~an estimate is obta&ed of the norm of the inverse operator [p’%)] = fE - 

-1 

u - Au = -P (he), P (ho) = -B& {he) 

AU G BBI’(h&4, u=Ah=h,-ho, h,==h,*qz 

( 1.12) 

where &[x, t) is the sought ffat app~xi~~~ and E is a unit vector. Thus the 
solution u (s, $) of JZq. (1.12) determlm%3 the ffrrt approximation of Newton’s process 
for Eq. (1.9) (or problem (1. U. (1.2% 

Since B,'(h)Ah E C"i", hence in conformity with the corollary of Theorem 
1 it is possible to use estimates (1.8). Then, taking into account the uniform bound- 
edness of f&cti~ u, &, and ut , and of equagttes 
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d I iYxBB,‘u = tBB,‘u (x, to) * q%‘(x, t”) 
a I &BB,‘u = BB,‘u - kotB&‘u (x, to) * qt’ (x, t;) 

we obtain 

where C, is the sum of constants in H&k’s conditions. 
The influence of 1 -I- 1 x jl+b leads to the substitution of another constant for 

cs . We have 

II A II Q cv [I -L”’ + ~+(+++)hr+hs4]=X (1.13) 

The estimate 

II BBl” II Q 4 - +‘I 1 M + a-l + a, + A*) = x, 

can be similarly obtained. 
We assume M to be fairly large and 5 fairly small so that x(1. Letthe 

input function he (2) be such as to ensure the inequality 11 P (h,) II < (1 - %)I?, 
F;ccording to the principle of co&active map#ng there exists in the sphere 11 u JJ 

a unique solution of 4. (l.l2), and 

11 [E - Al-' 11 < (1 - x)-l (1.14) 

T h e o r e m 2. Let the following conditions: 
1) thenonlinear operation B. and its detfvatives Bo’ and Bo” map the set of 

functions h E Cp* l+v into C> ’ and the estimate (1.11) hold, 
2) function he (x) E CT is such that 

II P (ho) II f ‘Ml - 4 R 

3) parameter M ensures the validity of inequalities 

c,R (1 - %I)-‘< 1, Xi+O=X,<X<l 

( 1.15) 

(1.16) 
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are satisfied, then the unique soWion of the Cauchy problem can be obtained by using 
the Newton’s process. 

Parameters aj are selected to as to transform (1.16) into nonrigorous incquaIities. 
There exists then a unique soIutiou of 4. (1.12) and all conditions of Kantorovich’s 
theorem [3,43, from which follows Theorem 2, are satisftcd, Note that condition 
(1.15) and estimate (1.14) ensure the validity of inequawes 

l?o = '/2x,151 (1 - x)-l 

in which the equality sign can only apply when qa = ‘f,. 
Let us consider the case of disc-w irUUa1 conditions. Let & (SC) fE L be 

a step funcUon. It is then possible to consider, without Ioss of generality, tk siugIe- 
step function 

&da(%) = ~==collSt, [z~<l, h,(z)=O, /si>l 

The limit vaIue of the derivative of h&z, -I- 0) can be obtained by assuming 
thatEq.(l.l)isvaIidupto t= +O, exceptatpoints 1~1 = 1, i.e. 

If the Fourier formula holds for function f (3~) , the application of the Eourier 
transformation the solutfon of the latter equation is obtained in the expIi&t form 
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Obviously 

lim hx(z, t) = 0, 
f-+0 

1 x 1 # 1 (1.18) 

It is then possible to represent Eq. (1.1) in the form (1.4) only when 
consequently, if f (t, t) E C> O 

t > 0 and, 
in the region with deleted points (5, t) = (& 

1,0), then unlike in (1.17) and (1.18). the behavior of derivatives of & and 
h, of the solution of problem (1.21, (1.4) near the discontinuity point 1 5 1 = 1 

is of order 0 (t”) when t + +O. The left-hand side of (1.9) has finite limits 
when t -t +0 (I x 1 # i), but its individual terms have singularities of the indicat- 
ed type. Owing to this in the estimates for h, and h, the constants are replaced 
by functions of t which tend to infinity when t-t +o. Omitting the proof, we 
note that solvability of this problem is proved by the norm (1.10) where t i [To, 2’1, 

To>0 onlyfor tE[T,, Tl. , 
As an example of B. we consider the operator 

OD 

Bob=-+ 5 Ike + ht (E, W Ko+ (5 - E; h rl) R - 

q (0 Ko (2;;: co + ha) - ko 

(1.19) 

Ko+(x; h, q) = [xhz - (h +q - 2hcs)l[x2 + (h + r) - 2hJ21-’ 

Katz, h, rl) = Ko-(x; h q) + Ko+ (5; h 7) 

h, =limhu, h,==h+h,, O<c,<l -e,, e,>O 
i+=J 

Itisassumedthatwhen q*o, h,(x)=0 and hu(x,+O)=ha=I, 
where h,, is tie grcnmd water level measured from the waterproof stratum 

Here q= 0 relates to the problem of dispersion of a ground water mound in a 
stratum of finite thickness (B,h s 0 co~~e+or~I~ to its dispersion in an infinitely 
thick stratum), while q + 0 corresponds to the problem of the fall of ground water 
level produced by a sink of intensity q (‘t) located at point (x, z) = (0, co) of 
the motion region {(x, z): - 00 < x C i- 00, 0 < a < h (x, t)} PI. 

In the tit case (q = 0) conditLont 1) of Theorem 2 is satisfied for any finite 
radius R, R > exp (--MT) sup 1 h, I, and in the second forR((1-co-eo)exp 
(-MT). The necessity of the latter constraint is due to the form of K. (x, h; co + 
h,) and is related to the loss of solution uniqueness for the ground water level in 
proximity of the tubular drain contour which is replaced by a line sink [5]. In that 
case with h,, (0, t) 3 co the assumption that z = h,, (x, t) belongs to Liapunov 
curves [2] is no longer valid. 

Condition (1.15) can be satisfied by a suitable selection of functions h, (z) (q 
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2. Lincarfxatioa of the nonlfnear intagto-differtn- 
tirl equation, Equaffon(l.1)withaUokrancefor(1.19~iJoftheform 

(2.1) 

An approximate soWion of problem (1.21, (2.1) can be obtWed by the finoades- 
tion method. For this the time Werval VI, Zl is subdlvkled by p&r& 0 = 4, < 
tl < . . . < t.v = T in N parts, and & and ICI at the small intervals (r,,,, &] 
are replaced by their values for t = fm - 0 (m = k2, . * ** N - i) 

~2 (z - E; h, q) = RI (z - 6; h Wt+,a= Kl (s, e; h) 

K. (t; h, co -+ h,) = Kq(.G h (5, tm - '$9 co + &,,) = Ko (% &) 

For @t ==a 0 functioar h and q in &, and ir, are repiaced by the fnitial 
values, Then, irtstead (2.1) we have the Unear equation 

If we BIsume that the Hpilder exponent v > lfll and that the For&et fkxrmat 
holds for f. I the Four&~ tr en@smatlon makes it po&ble to reduce (2.2) to the 

Fredholm equetioa of the second kind 
00 

(2.3) 



Nonliwar tntegro-dtfferaktirl cwaon of the theory of filtration 945 

The homogeneous equation that corresponds to (2.3) ‘has only a trivial solution, 
since owing to the uniqueness of the Fourier ~~o~a~on it is equivalent to Eq. (2.2). 
The homogeneous equation which corresponds to the latter is at the limit the same as 
Neunann’~ homogeneous external equation for expanding regions tending to the band 

(h* 4: - = < 2 < + 00, -ku(% $1 < 2 < kl b, @, t = em* &r&J 

This tmpliea the triviality of sofution of the homogeneous equation and the unique 
solvability of (‘2.3). 

Note that for a fairly smooth input functim he (4 the solution of (2.3) is m = 

N- 1 and uNEC~**oand I( N’ E Pd 0, hence the Fourier formula is valid for 
function f0 (z; t; &), m = 1, 2, . . ., N - 1. 

The linearization error 

%I+1 = u (t, t) - %n+1 (2, a t E urn, hJw1, u - hf 

where h (I, 2) is the exact solutfon of Eq. (2.1) and sat&f@ the equation of the 
form ((2.3) with kernel K = RI (5 - &; k =, m; qm, & and the right-hand side of 
f r= &Ah, whm & denotes some fincar operation on A&. That equation is 

sir&r to (2.2) and reduces to a Fredholm equation of the second kind; moreover we 
have the equality 

&I = tu (2, to'), ++I < t"k- < tkr k = i, 2, . . ., m 

h 

from which, on the assumption that h E Cy” we find that the linearization error 
em(~ci,2,...,N iSOf0rdU 0 (At) where At = ID;& Ok - &)a 

The difference between the proposed linearization method and the earlier 
modification of b&r’s method 111 applies to i~te~~~~ffal -ations of this type 
is similar to the difference between the results obtained with implicit and explicit 
difference schemea applied to the solution of equations of the parabolic type. 
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